The production of Rhizobium, Bio-fertilizer in the treatment to enhance the growth of commercially important Padauk and Pyinkado seedlings

By

Saw Yan Aung C Doo (M.Sc, Plant Pathology, UOH)

Wai Wai Than (M.Sc Forest Pathology, UOF)

Mai Lu Lu Phye (B.Ag. YAU)

July, 2008

Forest Research Institute
Forest Department
Ministry of Forestry
I wish to acknowledge my saya U Saw Yan Aung C Doo for his advice to do the research. I am indebted to Saya U Win Kyi (2) who taking photographs for this research. I am grateful to our Director of the Forest Research Institute, Yezin for his encouragement throughout the research paper. In addition, my sincere thanks are due to Dr. Myo Kywe, Yezin Agriculture University, and U Ohn Lwin (FRI) for their support to analyze the data of experiments. Lastly, I would like to express my gratitude to Mai Lu Lu Phye for her extensive cooperation in all of the experiments.
The production of Rhizobium, Bio-fertilizer in the treatment to enhance the growth of commercially important Padauk and Pyinkado seedlings

Saw Yan Aung C Doo (M.Sc, Plant Pathology, UOH)
Wai Wai Than, Research officer, (M.Sc Forest Pathology, UOF)
Mai Lu Lu Phye (B.Ag. YAU)

Abstract

A small scale production of rhizobium bio-fertilizer was produced in the laboratory to enhance the growth of padauk and pyinkado seedlings. Nodules oven dry weight from inoculated seedlings were more than non-inoculated seedlings. At the age of four months old seedlings were less in nodule formation than older seedlings. Rhizoid investigations on the slides were short rod, aerobic and motile. Comparisons of growth of the two species in rhizobium inoculated were highly significant. The nodulation and growth were highly correlated in pyinkado and padauk. However, nodulation in padauk was observed extreme value in 4 months old seedlings.
Contents

Acknowledgement

Abstract

1. Introduction
 1.1 Introduction

2. Literature Review
 2.1 Characteristics of Rizobia
 2.2 Growth rate
 2.3 Measuring the effectiveness of nodules
 2.4 Formation and distribution of nodules
 2.5 Nodule color
 2.6 Inoculants and inoculation
 2.7 Types of inoculants
 2.8 Carriers

3. Material and Methods
 3.1 Collection of Rhizobial trees and Seeds
 3.2 Isolation of Rhizoid Nodules
 3.3 Preparation of Pure Culture/Fermentation of Bacteria
 3.4 Inoculums Preparation
 3.5 Germinating of Seeds
 3.6 Preparation of Seedling bags
 3.7 Slides examination
 3.8 Statistical Analysis

4. Results
 4.1 Nodule Examination of Padauk and Pyinkado
 4.2 Rhizoid Investigation
 4.3 Soil Testing
 4.4 Growth of seedlings
 4.5 Nodules Oven Dry Weight

5. Discussion and Conclusion

6. References

7. Appendix
List of Plate

1. Nitrogen nodules from 3 years old Pyinkado tree, FRI, May, 2005
2. Nitrogen nodules from 3 years old Padauk tree, FRI, May, 2005
3. Comparison of height and nodulation of inoculated (t) and non-inoculated (c) with rhizobium of Pyinkado seedlings
4. Comparison of height and nodulation of inoculated (t) and non-inoculated (c) with rhizobium of Padauk seedlings
5. Rhizoid of Pyinkado (400 X)
6. Rhizoid of Padauk (400 X)

List of Figure

1. Comparison in growth with rhizobium treated and non-treated seedlings, pyinkado
2. Comparison in growth with rhizobium treated and non-treated seedlings, padauk
3. Comparison in nodule oven dry weight with rhizobium treated and non-treated seedlings, pyinkado
4. Comparison in nodule oven dry weight with rhizobium treated and non-treated seedlings, padauk
5. Corellation with nodulation and growth of pyinkado seedlings
6. Corellation with nodulation and growth of padauk seedlings
1. Introduction

Myanmar has a total land area of 67,657,700 ha, on which about 50% are still forested. In the natural forests, the composition of Pyinkado (*Xylia xylocarpa*) is 5.66% and Padauk (*Pterocarpus macrocarpus*) is 0.58% (FD, 2006).

In plantations, the percent of Pyinkado plantation is 6.8 and the percent of Padauk is 1.9 respectively (MKKG & ZWM, 2008). They are in the list of group (I) according to the grouping schedule of Myanmar Timber Enterprise (MTE) and are economically important as like as teak.

They are environmentally friendly N\textsubscript{2} fixation tree species. It should be noted that the plantations of these two species should be established in a large scale. For this, it is necessary to get the large quantity and quality of seedlings in the nursery operations for the plantation establishment. Therefore, the primary goal of this research is to produce good healthy seedlings for the establishment of plantation.

In Myanmar, biological fertilizers are producing from the agricultural sector by using leguminous crops and widely used. In forestry sector, some leguminous tree species have N\textsubscript{2} fixation associated with root nodules bacteria to produce biological fertilizer. These bacteria live on the roots of the leguminous plants and transfer atmospheric nitrogen to be utilized by the plants, and thus reducing the legume's reliance on soil nitrogen and nitrogenous fertilizer. Although the bacteria can infect the legume roots, the effectiveness of the association is dependent on the N\textsubscript{2} fixing efficiency of the rhizobial strain, the N\textsubscript{2} fixing capacity of the legume host and the environment (Burton, 1981).

These N\textsubscript{2} fixing bacteria can be cultured in the laboratory. In the other hand, chemical fertilizers are very expensive, economically inefficient in long term and the fertility of the soil can be gradually declined. Therefore, in forestry sector the investigation of biological fertilizer to enhance the growth of commercially important leguminous species is needed.

The main objective is the investigation of biological fertilizer to enhance the growth of commercially important leguminous species. The specific objectives are (1) to apply at the forest nurseries (2) to obtain healthy plants. (3) to substitute rhizobium biofertilizer in the forestry sector instead of using chemical fertilizer.

2. Literature Review

2.1 Characteristics of Rhizobia

Rhizobia are soil bacteria characterized by their unique ability to infect root hairs of legumes and include effective nitrogen- fixing nodules to form on the roots. (NifTAL, 1984). Rhizoid are short to medium Gram-negative rods. Rhizobia are living one-celled microorganisms and will die if the temperature is too high or if there is insufficient moisture. They are aerobic and motile. They multiply by simple cell division (NifTAL, 1984).
2.2 Growth rate

Fast growing forms produce medium or large colonies (1 to 5 mm) after three to five days at 25º-28ºC. Colonies of slow-growing rhizobia will be barely detectable at three to five days and even after ten, will commonly produce colonies not exceeding 1 mm (Vincent, 1982). The optimal growth temperature is 28 to 30ºC (NifTAL, 1984).

2.3. Measuring the effectiveness of nodules

Measurements have been based on pattern of nodulations, nodules dry weight, colour and plant N content (Erdman and Means, 1952; Halliday, 1984).

2.4 Formation and distribution of nodules

Effective nodules are generally large and are clustered on the primary and upper lateral roots (NifTAL, 1984). Generally, effective strain nodules both tap and lateral roots, but ineffective strain primarily nodulate the lateral roots (Allen and Allen, 1940; Saric, 1963). Nodulation, especially large nodules, on the tap root is desirable since it indicates early infection and onset of N$_2$ fixation (Allen and Allen, 1940). Total nodule mass formed by effective rhizobia and the quantity of N$_2$ fixed is linearly related (Zary et al., 1978; Wadisirisuk and Weaver, 1985).

2.5 Nodule color

An effective nodule has a relatively large red inner region due to the presence of leghaemoglobin, which is positively correlated with the quantity of N$_2$ being fixed (Vincent, 1974; Graham and Parker, 1961). The red haemoglobin in effective nodules breaks down to green legcholeglobin as the nodules become older and senescent (NifTAL, 1984). Ineffective nodules are white to pale green on the inside and they do not change colour as they age (NifTAL, 1984).

2.6 Inoculants and Inoculation

In many soils, the nodules bacteria are not adequate in either number or quality. Under these conditions, it is necessary to inoculate the seed or soil with highly effective rhizobia cultures. Nodules bacteria (Rhizobium spp.) are cultured in the laboratory and mixed with a suitable carrier material, such as peat to make an inoculant, nodule development at four to five weeks should reveal adequacy of the inoculation treatment. The process of adding this inoculant to seed on soil is called inoculation (NifTAL, 1984).

2.7 Types of inoculants

NifTAL, 1984 mentioned that legume inoculants are of two general types: those designed for application to seeds and those designated for application directly to soil. Seed inoculants are the most common because they are easy to apply and are generally effective under normal conditions. Application of inoculants directly to the soil may be necessary to obtain effective nodulation when sowing legume seeds in hot, dry or highly acidic soil or under adverse weather conditions.
2.8 Carriers

Preparation of high quality legume inoculants is dependent on selection of suitable carrier materials and their pre-treatment. Peat soil has organic matters highly and is widely used as carrier material for rhizobia (Vincent, 1982). Peat has been the most commonly used basis for commercial inoculants, but some peat does not meet the requirements of a good carrier. Carriers must have a high water holding capacity, provide a nutritive medium for growth of rhizobia and enhance survival during distribution and when inoculated onto seed.

The type of peat affects the number of developing rhizobia and their survival during storage. The qualities of good carrier materials are; (1) highly absorptive and easy to process (2) non-toxic to rhizobia (3) easy to sterilize (4) available in adequate amounts (5) inexpensive (6) good adhesion to seeds.

3. Materials and Methods

Experiments were carried out at the laboratory of Forest Protection, Forest Research Institute, Yezin from April 2005 to January 2007.

3.1 Collection of Rhizobial trees and Seeds

Two kinds of family Fabaceae tree species Padauk (*Pterocarpus macrocarpus*) and Mimosaceae tree species Pyinkado (*Xyli a xylocarpa*) were selected randomly from the nursery of FRI. Each 3 years old healthy seedling of padauk and pyinkado were used to collect their nodules among the ten seedlings of the two species. With a spade, describe a circle with a radius of approximately 15 cm around the plant and cut out the section to a depth of at least 20-20cm or deeper. Carefully removed the soil and washed the clump gently. Collected the nodules from their roots to examine bacteroides and isolate in the Forest Pathology laboratory.

The seeds of *P. macrocarpus* and *X. xylocarpa* were bought from the seed collector of Pyinmana to plant as seedlings to make an inoculation.

3.2 Slides examination

Smear of Rhizobium from Pyinkado and Padauk were spread in thin layers slides to examine under the light microscope. The characteristic of rhizoid presence in the nodules were noted.

3.3 Isolation of Rhizoid Nodule

The effective of nodules (2 or 3) from collected plants of Pyinkado and Padauk were cut and sterilized in Hg C₁₂ (1:1000) for 1 minute and alcohol for 1 minute. Then the disinfectants were washed off by transferring into sterilized water for 4 - 5 times at 1 minute in each time. The nodules were teased with glass rod in a petridish to get smear. The smear was diluted into (-7) suspensions and isolation on the Yeast Manitol Agar Media (Appendix). After 3-7 days, the pure colonies were transferred into the test- tube which contained slant agar media.
3.4 Preparation of Pure Culture/Fermentation of Bacteria

After the test-tube preparation, a bit of growth from the bacterial culture was mixed with YM broth (Vincent, 1970) in 125 ml conical flask. Shaker was used with 1.5 RPM x 100 for rhizobium. One milliliter bacterial liquid from the 125 ml conical flask was transferred into the YM broth of 1000 ml conical flask. It was shaken for 14 days.

3.5 Germinating of Seeds

Seeds of Padauk and Pyinkado were germinated enough to obtain seedlings in the seedbed for 1 week or until the true leaf emerged.

3.6 Preparation of Seedling Bags

Peat soil from Pyin Oo Lwin was used as a carrier for growing of rhizoid. Remove debris and sifted the soil using a 0.5 cm mesh screen. Nursery soil (sand 1: manure 2: soil 3) used in the experiment was sterilized at 120 °C with pressure 15 lb for 20 minutes. Peat soil and soil mixture were tested the ratio of OM and pH at soil lab, FRI.

3.7 Inoculums Preparation

Peat soil was kept in 6" x 8" plastic bag and sterilized them. 50 ml of fermented bacterial broth was injected into each of 100gm of sterilized peat packet. The inoculated packets were stored at 25-29°C until it was used in the experiment. It can be stored even up to six months before using.

The sterilized soil was mixed with the inoculated peat soil packet at the ratio of about 2800 gm (1 pyi) per 1 packet. The seedlings of Padauk and Pyinkado from the seedbed were transferred into the 3 x 7 inches seedling bags. They were placed in the mist chamber of the FRI. It had 25-30 °C and seedlings were watered daily.

Seedlings heights, , nodules color and nodules oven dry weight (80°C, 24 hours) were recorded starting at the stage of four months old seedlings and continually measured to seven months old in monthly.

3.8 Statistical Analysis

Statistical Analyses were performed by GENSTAT computer software program and calculated by Two x Two Factorial Experiment, CRD design with three replications. Correlations were evaluated by r2 value in regression line.

4. Results

4.1 Nodule examination of Padauk and Pyinkado

Nodules of Pyinkado were found on the lateral roots and tap root. Nodulation of Pyinkado was medium size, red color (Plate 1) and isolation period was observed in only 5 days at room temperature. Bacteria colonies were found fast growing and color is white or cream.
Nodules of Padauk were observed on the tap root and lateral roots. Its nodules sizes were larger than Pyinkado nodules and nodules color was yellow-brown (Plate 2). Isolation period was found in one week at room temperature and growing bacteria color was white or cream.

4.2 Rhizoid investigation

Rhizoid investigations on the slides were short rod, aerobic and motile. Rhizobium nodulation was found after 5 weeks inoculation. in pyinkado, however, the nodulation was late in padauk. (Plate 5) (Plate 6)

4.3 Soil testing

Sterilized peat soil had pH 7.5 and 0.28% and organic matter 10.4%. Nursery soil and peat soil mixture contained pH 7.5 and organic matter 9.5%.

4.4 Growth of seedling

Inoculated seedlings were gradually higher than non-inoculated seedlings in the monthly measurement. (Plate 3&4). Comparisons of high were highly significant (0.001 level) in inoculated seedlings of pyinkado and padauk (Figure 1.), (Figure 2.) (Appendix) The high correlation between of nodulation and growth was observed in Pyinkado (Figure 5) and Padauk seedlings (Figure 6).

4.5 Nodules dry weight

Nodules oven dry weight of seedlings were significant between inoculated and non-inoculated seedlings (Appendix). However, it was noted that the nodule weight was very small in 4 months seedlings of padauk. It had extreme value, therefore some of variation were higher than normal variation.

5. Conclusion and Discussion

N_2 fixation depends on the strain of the host plants, the associated rhizobial strain and the environmental conditions such as soil type, soil pH, organic matters, temperature, light, moisture stress, and, planting density influence nodulation (NFTA, 1987). Both root nodules bacteria are currently classified into only genera which cannot be studied to know their strains. Additional methods (molecular biology, serology, etc.) are not available at the FRI. Using soil type, soil pH, organic matters and temperature of mist chamber only could be recorded and applied to obtain favorable nodulation as NFTA, 1987 mentioned. Vincent (1982) stated peat soil has organic matters highly and is widely used as carrier material for rhizobia. In the soil testing, pH and organic matters of using soil were suitable carrier materials for rhizobia growing.

Total nodule mass formed by effective rhizoid and the quantity of N_2 fixed was linearly related (Zary et al., 1978; Wadisirisuk and Weaver, 1985). According to their descriptions, nodule formations were followed by inoculation of rhizoid, but the quantity of N_2 fixation should be studied in further.
Nodules formation could be found in non-inoculated seedlings, however, it was less than inoculated seedlings and also growth rate was differ from inoculated seedlings. In the plate 3 and 4, root hairs could be seen obviously and more in the inoculated seedlings, thus, it is easy to conclude that nutrient absorption of inoculated seedlings can be better than non-inoculated seedlings. The nodules could be found a few numbers in 4 months seedlings that mentioned the age is concerned with the nodulation.

Figure (5, 6) showed that the more nodulation, the higher growth of seedlings. highly significant and correlated (Appendix). However, padauk was observed extreme value in 4 months old seedlings, therefore it had high variation. If extreme values data to be omitted, variation can be less in analysis.

In Forestry, application of inoculation directly to the soil is commonly using method than seeds dressing with rhizobium. Therefore, which method is more effective should be compared between them.

This study is preliminary investigation of using biological fertilizer. Further investigation should be carried out rhizobium characteristics in detail. The objective of using bio-fertilizer is to substitute the chemical fertilizer for ensuring adequate nitrogen nutrition of legumes. Not only Forest Department will get the benefits of new technology for the production of quality seedlings but also next generation of the researchers can refer to study more from the research.
Plate 1. Nodules from 3 years old pyinkado seedling, FRI nursery

Plate 2. Nodules from 3 years padauk seedling, FRI
Plate 3. Comparison of height and nodulation of inoculated (t) and non-inoculated (c) with rhizobium of Pyinkado seedlings

Plate 4. Comparison of height and nodulation of inoculated (t) and non-inoculated (c) with rhizobium of Padauk seedlings
Plate 5. Rhizoid of pyinkado (400X)

Plate 6. Rhizoid of padauk (400X)
Figure 1. Comparison in growth with rhizobium treated and non-treated seedlings, pyinkado

Figure 3. Comparison in nodule oven dry weight with rhizobium treated and non-treated seedlings, pyinkado

Figure 2. Comparison in growth with rhizobium treated and non-treated seedlings, padauk

Figure 4. Comparison in nodule oven dry weight with rhizobium treated and non-treated seedlings, padauk
Figure 5. Corellation with nodulation and growth of pyinkado seedlings
Figure 6. Corellation with nodulation and growth of padauk seedlings
Appendix

Yeast Manitol Agar

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manitol</td>
<td>10 (gram)</td>
</tr>
<tr>
<td>K2HPO4</td>
<td>0.5</td>
</tr>
<tr>
<td>MgSO4.7H2O</td>
<td>0.2</td>
</tr>
<tr>
<td>NaCl</td>
<td>0.1</td>
</tr>
<tr>
<td>Yeast</td>
<td>0.5</td>
</tr>
<tr>
<td>Agar</td>
<td>15</td>
</tr>
<tr>
<td>Congo red</td>
<td>0.25</td>
</tr>
<tr>
<td>Distilled water</td>
<td>1 liter</td>
</tr>
</tbody>
</table>

ANOVA

H4
Source of variation	d.f	s.s	m.s	v.r	F pr
A | 1 | 1.1756 | 1.1756 | 2.69 | 0.140
B | 1 | 10.3119 | 10.3119 | 23.59 | 0.001**
A.B | 1 | 2.8188 | 2.8188 | 6.45 | 0.035
Residual | 8 | 3.4976 | 0.4372 |
Total | 11 | 17.8040 |

CV 10.2%
H4 height of 4 months old seedling
** highly significant

H5
Source of variation	d.f	s.s	m.s	v.r	F pr
A | 1 | 1.4630 | 1.4630 | 1.94 | 0.202
B | 1 | 19.5841 | 19.5841 | 25.92 | <0.001**
A.B | 1 | 2.6040 | 2.6040 | 3.45 | 0.100
Residual | 8 | 6.0441 | 0.7555 |
Total | 11 | 29.6952 |

CV 12.4%
H5 height of 5 months old seedling
** highly significant
H6

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>d.f</th>
<th>s.s</th>
<th>m.s</th>
<th>v.r</th>
<th>F</th>
<th>pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>2.9701</td>
<td>2.9701</td>
<td>4.67</td>
<td>0.063</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>18.8752</td>
<td>18.8752</td>
<td>29.70</td>
<td><0.001**</td>
<td></td>
</tr>
<tr>
<td>A.B</td>
<td>1</td>
<td>3.3391</td>
<td>3.3391</td>
<td>5.25</td>
<td>0.051</td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>8</td>
<td>5.0849</td>
<td>0.6356</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>30.2692</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV 10.8%

** height of 6 months old seedling

** highly significant

H7

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>d.f</th>
<th>s.s</th>
<th>m.s</th>
<th>v.r</th>
<th>F</th>
<th>pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>5.2140</td>
<td>5.2140</td>
<td>19.79</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>26.1370</td>
<td>26.1370</td>
<td>99.22</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>A.B</td>
<td>1</td>
<td>5.5897</td>
<td>5.5897</td>
<td>21.22</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>8</td>
<td>2.1074</td>
<td>0.2634</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>30.2692</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV 6.3%

** height of 7 months old seedling

** highly significant

N4

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>d.f</th>
<th>s.s</th>
<th>m.s</th>
<th>v.r</th>
<th>F</th>
<th>pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0.0167</td>
<td>0.0167</td>
<td>0.10</td>
<td>0.765</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1.0017</td>
<td>1.0017</td>
<td>5.74</td>
<td>0.043*<0.05</td>
<td></td>
</tr>
<tr>
<td>A.B</td>
<td>1</td>
<td>0.0018</td>
<td>0.0018</td>
<td>0.01</td>
<td>0.922</td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>8</td>
<td>1.3956</td>
<td>0.1745</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>2.4158</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV 101.2%

N4 oven dry weight of 4 months old seedling

* significant
<table>
<thead>
<tr>
<th>Source of variation</th>
<th>d.f</th>
<th>s.s</th>
<th>m.s</th>
<th>v.r</th>
<th>F pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0.0528</td>
<td>0.0528</td>
<td>0.26</td>
<td>0.623</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>3.4949</td>
<td>3.4949</td>
<td>17.27</td>
<td>0.003**</td>
</tr>
<tr>
<td>A.B</td>
<td>1</td>
<td>0.0239</td>
<td>0.0239</td>
<td>0.12</td>
<td>0.740</td>
</tr>
<tr>
<td>Residual</td>
<td>8</td>
<td>1.6187</td>
<td>0.2023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>5.1903</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV 54.9%

** oven dry weight of 6 months old seedling

** highly significant

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>d.f</th>
<th>s.s</th>
<th>m.s</th>
<th>v.r</th>
<th>F pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0.7626</td>
<td>0.7626</td>
<td>6.48</td>
<td>0.034</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>5.6925</td>
<td>5.6925</td>
<td>48.38</td>
<td><0.001**</td>
</tr>
<tr>
<td>A.B</td>
<td>1</td>
<td>0.0257</td>
<td>0.0257</td>
<td>0.22</td>
<td>0.653</td>
</tr>
<tr>
<td>Residual</td>
<td>8</td>
<td>0.9414</td>
<td>0.1177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>7.4221</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV 35%

** oven dry weight of 6 months old seedling

** highly significant

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>d.f</th>
<th>s.s</th>
<th>m.s</th>
<th>v.r</th>
<th>F pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0.3407</td>
<td>0.3407</td>
<td>1.46</td>
<td>0.261</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>10.2342</td>
<td>10.2342</td>
<td>43.89</td>
<td><0.001**</td>
</tr>
<tr>
<td>A.B</td>
<td>1</td>
<td>0.0365</td>
<td>0.0365</td>
<td>0.16</td>
<td>0.703</td>
</tr>
<tr>
<td>Residual</td>
<td>8</td>
<td>1.8655</td>
<td>0.2332</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>12.4769</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV 36.8%

** oven dry weight of 7 months old seedling

** highly significant
References

Edman, L.W and Means, U.M. 1952. Use of total yield for predicting nitrogen content of
inoculated legumes grown in sand cultures. Soil Sci.
FD. 2006. Forestry in Myanmar.
Aust.J.Sci
NFTA. 1987. N2 fixing tree research reports. vol 5. Hawaii
NifTal. 1984. Legume Inoculants and their Use. NifTal Project. USA.
Saric, Z. 1963. The Nature of the Virulence to Peanuts of Different Strains of Nodule
Bacteria ARHIV ZA POLJOPRIVREDNE NAUKE.
Cambridge University Press.
Publishing.
Wadisirisuk, P. & Weaver, R. W.. 1985. Importance of bacterial number in nodules and
effective nodule mass to dinitrogen fixation by cowpeas. Plant and Soil.
Pea. Hort. Sc